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Abstract

The paper is oriented toward research and development of the possibilities of using the theory of abstract metric
spaces 1n the solution of selected problems in geotechnology. The notion of ,,metric space‘“is introduced in functional
analysis as a special chapter of so-called modern mathematics. It is a mathematical abstraction of the classical 3-
dimentional Euclid space. The article investigates the possibilities of constructing such abstract spaces, where the
elements (points) are geophysical signals or multidimensional data connected with the solution of specific problem in
the area of geotechnology. This approach enables to solve many problems as problems of classification of objects or
states of processes as elements of the space represented by its specific signals or data. Application of metric spaces
subsequently opens up the possibility of application of one of the methods of artificial intelligence.

Abstrakt

Clanok je zamerany na vyskum moZnosti vyuzitia tedrie abstraktnych metrickych priestorov pri rieseni
vybranych problémov v geotechnike. Pojem ,,metricky priestor* zavadza funkciondlna analyza ako Specialna kapitola
tzv. modernej matematiky. Ide o matematickt abstrakciu klasického trojrozmerného Euklidovho priestoru. Prispevok
skima mozZnosti konStrukcie takychto abstraktnych priestorov, kde by jeho prvkami (bodmi) boli geofyzikalne signaly,
resp. viacrozmerné data spojené s rieSenim konkrétneho problému z oblasti geotechnologii. Tento pristup umoZzni rieSit’
mnohé problémy ako problémy klasifikacie objektov alebo stavov procesu ako prvkov priestoru, reprezentovanych
svojimi Specifickymi signadlmi alebo datami. Aplikdcia metrickych priestorov otvara ndsledne moZznost' nasadenia
niektorej z metdd umelej inteligencie.
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1 Introduction

Many problems in the area of Geoscience, but also problems in engineering geology, geophysics, seismology,
etc., are solved with methods based on measurement, processing and evaluation of various geophysical signals
(Krepelka, 2008), (Pandula, 2010). Such geophysical signals could be for example seismic recordings, responses of
structures to artificial or natural excitation, seismological recordings of earthquakes, signals of mechanical oscillation
in a rock massif in seismic tomography, etc.

These methods of evaluation of signals are frequently based on their mutual comparison or on the comparison of
measured signals with certain template signals (norm). In some cases the dynamics of changes of certain specific signal
is monitored in repeated measurements over a period of time. The efficiency of these methods can be increased if we
can find an exact way of mutual comparison of signals. Very interesting and often highly efficient possibilities are
offered by functional analysis (Taylor, 1973), namely the theory of abstract metric spaces. Functional analysis
identifies a function, satisfying certain basic properties, with a point (vector) in space and analogously to the classical
Euclidean 3-dimensional space it defines different properties between points of the space from the viewpoint of
topology and geometry.

For example, it is possible to define, in a topological and geometrical sense, the distance between two functions
in a space which expresses their distinction, similarly the angle subtended by these functions as vectors in the space. It
is a property that only identical functions can have zero distance, zero angles can be subtended only by functions that
differ only by being a constant multiple of each other (collinear vectors). A special meaning in these abstract vectors
has the algebraic operation of scalar product of two vectors in space which takes on the value 0 for two mutually
perpendicular vectors. In the case of vectors as functions, this scalar product is zero for so-called orthogonal (mutually
perpendicular) or orthonormal functions.
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The utilization of abstract spaces for the solution of problems in which measured signals are used can be divided
into two levels: 1. utilization of real finite-dimensional Euclidean space, 2. utilization of complex infinite-dimensional
Hilbert space (LesSo, VEGA 2009).

2 Utilization of abstract Euclidian-type space
The first possibility is frequently used in modern methods of technical diagnostic, but also in methods of
N
artificial intelligence and is based on utilization of finite-dimensional abstract space of Euclidean type E,; =R . In this

case, from each realization of the compared signals a group N of symptoms is computed (extracted), each of which
mostly takes on areal value. Then each of the compared signals 1is represented by asymptom
vectorp=(p,,p,,...py )€ Ey. Mutual comparison of signals is then performed based on their mutual distance

Pe (pi P ) e R and based on the size of the subtended angle gp(pi P ) :

N
Pe (Pier)JZ(Pik P )2 = (1)
k=1
<PirP]‘> 4
go( i,pj):arccos ,0<p<—. (2)
il 2

For the norms of the symptom vectors we have:

Yo
Ipl=[>pi 3)
k=1

for the scalar product of a pair of symptom vectors the following holds:
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N
<Pier>:ZPikPﬂ<- 4
k=1

So an interpretation of the signal in such a Euclidean N — dimensional linear algebraic space requires suitable choice of
algorithms for the extraction of individual symptoms. The choice of these algorithms determines the measure of mutual

N
differentiability of signals as points in the abstract symptom space Ey; =R .

3 Utilization of abstract Hilbert-type space

A second possibility is less utilized and belongs among higher methods of signal processing. It is based on the
utilization of infinite-dimensional abstract Hilbert space H (Naylor, 1981). The fundamental property of the Hilbert
space is its set-point structure which makes it possible for a point in space to represent an entire realization of the signal
in the form of a continuous bounded function of time or some other independent variable. Moreover, it can be
a complex function or complex signal since the coordinates in Hilbert space are complex numbers. Therefore it is the

space H = C”". For an implementation of the signal as a point in Hilbert space we can use two types of Hilbert space
that differ in their set-point structure.
A space of the type L, (0,T) is aset of all possible complex or real functions continuous and bounded in the

interval (0, T). Then the signal x(¢) considered as a point in space can be written as follows:
x=(x(t),t:0—>T)eLp (0,T). (5)

A space of the type I, is a set of all possible infinite sequences of complex or real numbers and the signal x(t)

considered as its element in the time interval (0,T) can be written as follows:

x:(xl,xz,...)elp. (6)
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Relation (6) corresponds more to the sampled signal in digital processing, while relation (5) corresponds to an analogue
signal before its digitization. In the following text we use notation (5).

N
Similar to the case of finite-dimensional Euclidean space Ey, =R , also in the case of Hilbert space topological

and geometrical relations hold between signals as points in space. For the distance of two signals
x; (t),x;(t)eL,{0,T) we have:

T p VP

p(xi,xj)z ﬂxi(t)—xj(t)‘ dt| ,1<p<o, (7)
0

for the angle subtended by two signals as vectors the following holds:
(i)
(¢ =arccos————— . (8)
el [,
For the L, norms of signals as vectors we have:

1/2

T
2
Il =| [lx(e) dt | 9)
0
for the scalar product we have:
T *
<xi,xj>: Ixi(t)xj (t)dt, (10)

0
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*

where x; (t) is the complex-conjugate number to the value of the functionx; (f).

The algebraic structure of Hilbert space makes it possible to express (expand) the same vector as a point of the
space relative to different orthogonal or orthonormal bases. Specifically it is the general form of so-called Fourier
series:

x=Y xb, (11)
k=0

where x is the vector expressed in the original basis, coefficientsx, , and k=0, 1... are the so-called Fourier coefficients

of the expansion ( spectrum) and they are the coordinates of the vector x relative to the basis b= (b1 by, b, ,) For

the coefficients of the expansion we have:
T

v ={x.b) = [x(t)y (1)dt. (12)

0

The original basis of the read-in signal is the basis of an infinite sequence of unit functions, analogously to the
orthonormal basis of the Euclidean space.
In applications, the expansion of the vector x € H into a Fourier series (11) is mostly done relative to the

. . . . iogt it it . .
orthogonal harmonic functions in the exponential form{e e e * ,} The coefficientsx, , k=0, 1, 2, of this

A

T
it —iwt Al i
expansion are given, on the basis of (12), by the relationx, :<x,e1 ' >: jx(t)e o dt=F, =‘Fk‘el(p, where the
0

symbolic notation of these coefficients ﬁk says that they are complex numbers (complex amplitudes of harmonic
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components of the signal). In practical solutions these coefficients of the signal spectrum are calculated for finite
frequency resolution with the well-known fast Fourier transform FFT or DFT.
Expression of the signal as a continuous bounded function of time in the interval (0,T) can be done in two

equivalent ways:
e similar to (5) as a continuous function of time x =(x(t),t:0 >T)e L,(0,T),

¢ in a modified version of (5) by using its spectrum, in our case the frequency spectrum as
. 1 ¥ ~ L) ia)t .
e functionx =| x(t)=— IF (1a))e dw, t:0>T |e Lp <O,T>, where the function values are calculated from the
27 0
spectrum of the signal by using the functional for the inverse Fourier transform. In this case the expression F (iw)
represents continuous complex frequency spectrum of the signal as a continuous analogue of the above-mentioned
discrete spectrum F, (iw), k=0,1,2,...

The above equivalence of the expressions of the signal in time and frequency domains means, from the
viewpoint of Hilbert spaces, that the geophysical signal x can be defined from the viewpoint of functional analysis as

a point (vector) of Hilbert space of type LP, while its coordinates can be the values of the signal fort:0+— T, or

complex values of its continuous frequency spectrum F (iw) forw:0> oo. Thus in both cases it is the same vector of

the space H, the difference being in the orthogonal basis used. For these two representations of the same signal to be
typographically distinguished, it 1is possible to wuse different size of letters, so that we have:

x=(x(t),t:0- T)eL,(0,T) andX =(E(iw),0: 0> w) e, (0,).

The problem of the interval (0,00) not being closed from the right is not treated here since in digital processing of
signals this mathematical flaw disappears.
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4 Comparison of geophysical signals in symptom space of type En

location symptom vectors of three rocks in symptom space
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Fig.1 Symptom vectors extracted from realizations of the vibration signal from

separation of three rocks in symptom space E,

One of the areas of geotechnology where abstract mathematical spaces can be utilized is efficient control of the
process of rotary drilling of rock massif, where the signal of concurrent vibro-acoustic emissions can be used as an
integrating source of information about the current state of the drilling process. The scientific research in this area is
oriented toward classification of rock separation and their sorting into common classes. Sorting of the rock currently
being separated into a specific class based on the character of the concurrent vibro-acoustic emissions makes it possible
to subsequently set such a mode of the drilling equipment which is evaluated by off-line experts as efficient mode for
the given class. In the following figure are shown symptom vectors extracted from thirty realizations of the concurrent

-89 -



vibration signal from three types of rock. For reasons of possible visual display there are two-component symptom
vectors p; =(p;1,P;» ), Where the symptom p;; is calculated as the norm of the sampled signal (realization) with the

length of n=1024 samples:

1023 5
pin =X=,| > % =Lyx, (13)
k=0

and the symptom p;, is the ,,peak-to-peak*“parameter given by the relation:

Fig.1 documents good differentiability of three rocks in Euclidean symptom space E, .

In Table 1 are given the distances between the centroids of symptom vectors in the space E; with scalable
symptoms into the interval (0,1) by using the metric (1). All 9 symptoms are extracted form the concurrent acoustic
signal from the process of rotary drilling of five rocks. The results confirm once again the high differentiability of the
rocks being drilled in the symptom space E, .

Tab.1 Mutual distance of centroids of symptom vectors in the space
Ey; the symptoms are extracted from the concurrent acoustic
signal

Marble | Chamotte | Brick 2 | Limestone

Quartz 0,40 0,41 0,29 0,60
Marble 0,00 0,81 0,12 0,21

Chamotte 0,81 0,00 0,69 0,99
Brick 2 0,12 0,69 0,00 0,31
Limestone 0,21 0,99 0,31 0,00




5 Comparison of geophysical signals in Hilbert space of type L=H

In the following, an application of the Hilbert space is again illustrated in the field of efficient control of the
process of rock separation by rotary drilling. The signal of concurrent vibrations is understood here as an element of the
space LP (0,T)=H, while this real signal of the accelerometer satisfies the conditions of continuity and bounded ness

in the interval (0,T) and can be expressed in the form (5). In Fig.2a is shown the time waveform of the realization of
this signal and in Fig. 2b is a simplified illustrative depiction of this realization of the signal as a point in infinite-
dimensional Hilbert space whose coordinates are individual values of the signal in timet,t:0—T. The signal as
a vector here 1s simply depicted as a mass point of coordinates of the vector. In Fig. 2c¢ 1s a simplified illustrative
depiction of the signal realization as a point infinite-dimensional Hilbert space whose coordinates are individual values
of the amplitude spectrum of the signal for angular frequencies w,®:0 — «.

Realizations of signals of concurrent vibrations from the process of drilling of three rocks were analyzed in
(LesSo, 2009), (LesSo, 2010). Each realization of the signal was transformed with the FFT algorithm into the

vector X‘ = (‘1S (iw),w:0 oo‘) . Subsequently, norms of these vectors were computed from the relation:

1023 ) 5
X.\/Z E(io, )| =L,X, | =L2FT. (15)
k=0

This is a numerical realization of the relation (9). In Fig. 3 1s given the behaviour of this norm for thirty realizations of
each of the three rocks. Since the norm of the vector represents its distance form the origin of the coordinate system, the
difference in values suggests demonstrable differentiability of the analyzed rocks in Hilbert space.

Used the metric (7) applied to the vectors expressed respect to the basis of harmonic functions (frequency domain,

vector X = (ﬁ(la)),a) 0 oo) eL, (0,0)).

In Table 2 are given calculations of mutual distances of a triple of analyzed rocks in Hilbert space.
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time waveform of the vibration signal in drilling of limestone
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Fig.2a Time waveform of the vibration signal
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Tab.2 Mutual distances of vectors

L2F T rocks by using computed norms of vectors in frequency domain ofrocks in space LPEH in
1,00 ; ; _ : : . ; . ‘
requency domain
0.80
0.60 o | =— andesite
E limestone
S . Andesite Granite
0,40 | |— — granite
Limestone | Granite
0.20 - -
Andesite | Limestone
0.00 i i - f
1 4 7 w0 13 16 19 2 25 28 31 In Fig.4 is a virtual depiction of
realizations three analyzed rocks in 3D space,
Fig.3 Differentiability of analyzed rocks in Hilbert space by using computed norms when the calculated norms and
of vectors in frequency domain mutual angles have been used. The

figure is sort of a projection of rocks from infinite-dimensional Hilbert space into 3D Euclid space. Demonstrated is
good differentiability of rocks on the basis of concurrent vibrations in rotary separation.

6 Conclusions

In the contribution are given partial results of scientific research of a group of researchers who investigate the
possibility of using mathematical theory of abstract spaces in the field of processing of geophysical signals. The core of
the research at present is an application of these methods in areas of control of the process of rock separation by rotary
drilling.

First experiments also concern processing of seismic signals in engineering seismology. The authors present
basic theoretical foundations of the subject of metric spaces of Euclidean and Hilbert type, while preferring better
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andesite

limestone

granite

Fig.4 Virtual locations of analyzed rocks in
3D space corresponding to average
values of norms and values of mutual
angles of rocks as vectors in Hilbert
space

lucidity before mathematical rigor. Figures and tables illustrate relatively
good capability of the used methods and algorithms to differentiate
geophysical signals based on their properties. The ultimate goal of the
research oriented this way is to use abstract Hilbert spaces for the
classification and recognition of geophysical signals while taking into
account previously defined templates of individual classes of signals.
For the creation of class templates can be used, for example, the
algorithm of vector quantization. The techniques and methods given in
the paper can be connected with the methods of artificial intelligence. In
further research attention will be paid to utilization of these methods in
seismic tomography, where the influence of the inner structure of rock
block on the transmission of artificially generated seismic signals, and
associated possibilities of visualization, will be investigated.
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