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Abstract
Hilbert spaces are a higher, mathematical abstraction of Euclidean spaces of linear algebra. They represent a key 

notion in functional analysis as a chapter in modern mathematics. The elements of the Euclidean space, which is finite-
dimensional, are linear algebraic vectors as ordered n-ads of real numbers. The elements of a Hilbert space, which is 
infinite-dimensional complex space, are mathematical functions satisfying certain conditions. The set, topological, 
algebraic, and geometrical structure of these spaces enables to analyze mutual relations between functions as vectors. It 
is possible to generalize and subsequently to express numerically geometric notions such as e.g. size of function, angle 
subtended by two functions, distance of functions, etc. The authors present the use of Hilbert spaces in the solution of 
geophysics tasks when they solve the problem of how, in 3-D space, to graphically visualize the mutual geometric 
location between geophysics signals viewed as points – vectors of infinite-dimensional Hilbert space. 

Abstrakt
Hilbertove priestory sú vyššou matematickou abstrakciou Euklidových priestorov lineárnej algebry. Predstavujú 

k�ú�ový pojem vo funkcionálnej analýze ako kapitole modernej matematiky. Prvkami euklidovského priestoru, ktorý je 
kone�ne rozmerný, sú lineárne algebraické vektory ako usporiadané n–tice reálnych �ísel. Prvkami Hilbertovho 
priestoru, ktorý je nekone�ne rozmerný komplexný priestor, sú matematické funkcie, sp��ajúce ur�ité vlastnosti. 
Množinová, topologická, algebraická a geometrická štruktúra týchto priestorov umož�uje analyzova� vzájomné vz�ahy
medzi funkciami ako vektormi. Je možné abstrahova� a následne �íselne vyjadri� také geometrické pojmy ako napr. 
ve�kos� funkcie, uhol zvieraný dvoma funkciami, vzájomná vzdialenos� medzi funkciami, a pod. Autori prezentujú 
využitie Hilbertových priestorov pri riešení geofyzikálnej úlohy, pri�om v príspevku riešia problém ako v priestore 3D 
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graficky zvidite�ni� vzájomnú geometrickú polohu medzi geofyzikálnymi signálmi ako bodmi – vektormi nekone�ne
rozmerného komplexného Hilbertovho priestoru. 
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1 Introduction
The problem of control of the rock separation process has its specifics. The main problem is the fact that this 

process is intrinsically involved and its state quantities are non-measurable with standard methods in real-life 
conditions. The key question is the sufficiency of information about the effect of the drilling mode on the very 
behaviour of separation of particular rock (Leššo et al., 2010), (Leššo et al., 2009). Under the term „mode of 
separation“we understand the synergic effect of main technological components of the process of drilling which are the 
following action quantities: pressure of the drilling tool on the front of the drill F [N], revolutions of the drilling tool 
n [revs-1], flow capacity of the lavage during time unit Q [m3s-1] and the quality of the lavage, given by its 
physicochemical parameters. All these components are independent of each other; it is possible to control them 
individually during drilling. The knowledge of the drilling modes is the foundation of the knowledge of the process of 
rock separation by rotary drilling. 

From the system point of view the process of rock drilling can be understood in simplified form as the system 
characterized by the set of quantities some of which we can affect, but some not Fig.1. 

Both parameters w and �  are the state quantities of the process, which are not measurable directly under real-life 
conditions. More state quantities affect the process of separation: properties of the indentor (drilling tool) and the 
geomechanical properties of the rock massif being separated. 
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Fig. 1  Process of rock separation as the object  of control,
      controlled system n revolutions of the drilling tool
        [rpm], F - pressure force [N], Q - volume of lavage of

     the drill with water [m ×s ], v - speed of drilling
     [mm s ], M  - torque [Nm], w  specific work of
        separation [J m ], = /w - work capability of the tool 

           [m J s ].
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The task of synthesis of control of the process of drilling the rock massif, defined in this way, with the 
requirement to maintain efficient mode under the condition of maximization of the objective function, encounters the 
problem that it is unrealistic to create adequate analytical mathematical model of the process of rock separation by 
rotary drilling. This is because this process is too involved from the viewpoint of fundamental modelling and 
empirically obtained models are only valid under specific conditions. However, the monitored process of separation is 
strongly stochastic and non-stationary under the influence of changing geomechanical conditions and also under the 
influence of the indentor wear. Added to this problem are problems with measurability of the objective function under 
real conditions (Leššo et al., 2008), (Leššo et al., 2007), (Panda, 2000), (Panda, 2010), (Pinka et al., 2010). 

The solution is to avoid the classical system of control using a model of the process and to solve the system of 
control based on some of the modern methods of control of complex processes where the source of complexity can be 
nonlinearity, instability, difficult to describe stochasticity, non-measurability of parameters, multiplicity etc. Among 
such modern methods of control belong also the methods based on so-called artificial intelligence. 

In research of the question of efficient control of the process of rock separation by rotary drilling the basis was 
the intuitive idea that the accompanying vibro-acoustic signal contains information about the character of the process of 
separation from the viewpoint of geomechanical properties of the rock and from the viewpoint of efficiency of the 
process of drilling itself. This idea was verified experimentally. 
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2 Method descriptions
Hilbert spaces are infinite-dimensional spaces in which functions usually represent the points – vectors. The 

coordinates of such vectors are then the function values of given function in individual points of the definition domain. 
Each function value is in general a complex number. For the purposes of utilization of Hilbert spaces in the solution of 
specific tasks, e.g. tasks in the area of digital signal processing, the geometric structure of these spaces is significant 
and it provides an interesting tool for investigation of mutual relations between functions – signals as vectors of the 

space (Naylor, 1981), (Taylor, 1973), (Hansen, 2006). These mutual relations can 
be expressed quantitatively by using exact analytical expressions based on linear 
algebra. It is mainly about the norms of functions, angles between functions, 
angles between a function and chosen axis of the coordinate system and also 
about the mutual distances between functions according to the metric defined. In 
Fig.2 is shown the situation when there is a couple of functions , jf f  and 
denoted are three numerical characteristics expressing their mutual geometric 
relations: norm of the function, metric distance between functions and their 
mutual angle. The triple of such indicators enabled to illustrate the situation by 
using 3-D space. 

i

On the other hand, practice shows that evaluation of spatial relations 
among several functions as points of Hilbert space based on numerically 
expressed parameters is involved and cannot substitute empirical perception of 
space analogously as in 3-D space. Therefore each method enabling visualization 
of mutual location of functions in Hilbert space by means of 2-D or 3-D 
Euclidean space can be very useful in practice. In this contribution is shown one 
of the possible solutions of this problem. 

The notion „function“in mathematics has several forms of interpretation. 
In functional analysis to each of these forms there corresponds a certain class of 
Hilbert’s spaces. Physical signal read by a sensor can be understood as a bounded 

Fig. 2  Illustrative graphical
     depiction of mutual
      geometric  relations 
           of functions as points
          of Hilbert space.
                metric relations follow

from Schwarz  
Cauchy

               inequality

     the 
               –

Geo-

Bunyakowsky
–
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real or complex function of real variable, defined over a time 
interval ,t a b� .

From a mathematical viewpoint, such a function can be 
understood as an infinite sequence of function values, i.e. 

� �� � � �1 2, : , ,..., ,...kf f t t a b f f f� �� . Hilbert spaces whose 
elements are such functions make up a class of spaces ,p a bl .
A Hilbert space from this class is then a set of all infinite sequences 

of real or complex numbers such that the series of members of the sequence converges. 

Fig. 3 Method of unique determination location of function 
            in the infinite dimensional Hilbert space; using of two 
            reference functions  

� �� � ,Consider Hilbert space H of class ,p a bl . Its elements are functions ; :f f t t�i i p a ba b l� � , i=1, 2 ... The task 
of visualization of location of functions in Hilbert space by means of 3-D space can be defined from a mathematical 
viewpoint as a task of finding a one-to-one map  , which assigns one and only one vector 3: �F H E� 3iy E�  for any 
function H . Then for each pair jf fif � i �  from the space  holds ( ) ( ) .H i jF f F f�

In finding such a map F, one can use the fact that a vector in space  is uniquely identified by a triple of
R H

	
3

3 RE
real numbers; see the body . From this it follows the necessity to define in the space  a triple of such real numerical 
parameters that would together identify the location of function as vector in spaceH . In Fig.3 is illustrated the situation 
when in Hilbert space function f  is a vector. 

For the purposes of unique identification of the location of function  in Hilbert space are defined two reference 
functions – vectors, namely white noise  and centroid  of all functions from this space. In Fig.3 it is shown that 

if

Wf Cf
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the size of angle� , which is subtended by function  and centroid  along with the norm f Cf f  is not unique 
information about the location of the function since there is are an infinite number of such functions and their geometric 
location is the depicted circle. This ambiguity follows also from the Schwarz – Cauchy inequality: 
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After modification we obtain the equation whose structure shows it is the equation of the circle in Hilbert space: 

C Ck .             (2) 
0
kfcos

k

f f f�



�

� �

It follows from the above ambiguity of identifying function location by only one angle that it is necessary to 
simultaneously consider angle subtended by given function f  with another reference vector. Specifically, as a second 
vector there was defined the vector of white noise .Wf

So the proposed method of identifying the location of function  in Hilbert space uses two reference vectors: f

� White noise vector 
� �� �W W ; : pf f t t a b� l� .             (3) �

It synthesizes the harmonic components of all frequencies, so that 
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� Centroid  of all functions located in this space: Cf

� �� �C C ,; : p a bf f t t a b l� � ,             (5) �

where

� � � �C
1

1 N

i
i

f t f t
N �

� � , for b .            (6) :t a�

To provide good sensitivity and accuracy in the calculation of mutual geometric relations between signals it is 
suitable for the white noise as a synthetic signal to be defined so that its energy was identical to that of the centroid. For 
the energy of the centroid we have: 

� � 22
C C C d

b

a

E f f t t .             (7) � � �

Analogously for the energy of white noise: 

� � 22
W W W d

b

a

E f f t t .             (8) � � �
For the purposes of synthesis of white noise as a reference signal with required energy it is suitable to express this noise 
in the form of Fourier series as a sum of harmonic components of all frequencies with the same amplitude, defined in 
the interval ,a b  in the space ,p a bl :

� � � �
i

W W i e kt

k
k

f t F








��


� � , � � � �
 
� �W Wi C,� i conk kF F st..        (9) 

By substituting (9) into (8) we obtain for the white noise with the energy equal to the energy of centroid the relation: 
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� � � � � �
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For the energy of white noise in the relation (10) to be finite it is necessary that its spectrum be frequency bounded. If 
we bound it with the Nyquist frequency in the 
interval vz vz/ 2, / 2
� � , we get, while taking into account (9): 
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� �� �2W W CEkE B F b a
� � �i .     
                            (11) 
From expression (11) we then obtain the relation for the magnitude 
of the amplitude which is the same for all of its components in the 
band B:

� � C
W

1
ˆ , �k

E
F k B

B b a

 � �

�
i .      

                             (12) 
The mentioned three parameters, angle  with  centroid � 	      (f, fc),

	angle with white noise �    (f, fw) and the norm of the vector f
can be used as coordinates of the vector in space E  while using 
spherical coordinates, see Fig.3. These spherical coordinates can be 

transformed to Cartesian coordinates with the known transformation formulae, which lead to a point in the Cartesian 
coordinate system as a three of real numbers. 

3

Fig. 4  Mapping of Hilbert space function
           in space by using   transformation
           of polar coordinates into cartesian
           coordinates.

� � � � � � � � � � ��sin cos , sin sin , cosf f f� � � � � .         (13) 



Fig. 5  One side power spectrum of rocks  limestone, andesite, granite, concrete.
It follows from the structure of the relations used for the calculation of the angles that this way the functions in Hilbert 
space are mapped into one quadrant of the space E  only. The above method of mapping the vector in Hilbert space 
into the space  is illustrated in Fig.4. 

3

3E
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Fig. 6 Visualization in 3D of differentiability of four separated rocks represented by concurrent vibrations as 
 vectors in Hilbert space, O  - axis x, O  - axis y, O  - axis z, correspond with the expression (13)x y z
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3 Application of method in effective control of the process of rotary drilling
The above method was experimentally used in the solution of the task of effective control of the process of rotary 

drilling of rock massif (Krepelka et al., 2008), (Leššo et al., 2012), (Leššo et al., 2011). The essence of the proposed 
control algorithm is classification of the rock being separated on the basis of concurrent vibration signal. Recognition 
of the class of the rock based on the concurrent vibro-acoustic emissions, in which also its geomechanical properties are 
manifested, enables to subsequently choose form the table of experts the corresponding mode of drilling which is 
efficient for given class of rock. The mode will provide minimal specific energy of separation at maximal speed of 
drilling.  From realizations of concurrent vibrations of the process of separation of four types of rock (A – andesite, V – 
limestone, Z – granite, B – concrete) were calculated the power spectra. They represent, in the sense of above 
considerations, the functions – vectors of Hilbert space Fig.6. In view of random, but stationary character, these power 
spectra were averaged for each rock from 30 realizations of the signal Fig.5. The mode of drilling (pressure, 
revolutions) was stabilized during the measurement. On the basis of the above procedure, calculation of the three of 
digital positional characteristics was performed for the centroid of each rock. Those characteristics then determined 
a unique location in 3-D space Fig.6 for the centroid of each rock. 

The above method of visualization was used also for showing the fact that the concurrent vibrations contain 
information not only about the class of the rock being separated, from the viewpoint of its geomechanical properties, 
but also information about the current mode of drilling. In Fig.7 is shown the trajectory of the movement of power 
spectrum of concurrent vibrations as a vector of Hilbert space, namely at gradual increase of pressure F= 10000 [N]. 

4 Conclusions
The above methods of processing physical signals using the so-called new mathematics enable solution of many 

complex problems. Functional analysis, namely Hilbert spaces, makes it possible to analyze signals as functions and 
generalize geometric relations among them. Problematic, however, is the fact that these geometric relations of signals 
as vectors in Hilbert space cannot be empirically perceived as in the case of vectors in Euclidean 3D space. This 
contribution tries to show one of the possible solutions of this problem. 

The proposed method of unique map of vectors of Hilbert space into the 3-D space was applied on geophysical 
vibration signals from the process of rotary drilling of rock (Pandula et al., 2010).  Visualized was the differentiability  
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Fig. 7  Trajectory of concurrent vibrations of the process of drilling limestone at gradual
            increase of pressure F [N].

of four kinds of rock on the basis of vibrations and also the sensitivity of the location of vibration signal in Hilbert 
space on the mode of drilling. This method does not require a classical analysis of selected parts of the spectrum, using 
spectrum over the frequency range. This full spectrum represents of drilled rock as a vector in status Hilbert space. 
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