METHOD OF THE CONTROLLED CURRENT REGULATION —PARTIAL CONSTANT kgm FOR
ELLIPTICAL ELECTRODES OF THE 2-ELECTRODE MICROLATEROLOG

METODA KON]:ROLOVANE REGULACE PROUDU - DILCIi KONSTANTA kgw PRO
ELIPTICKE ELEKTRODY 2- ELEKTRODOVEHO MIKROLATEROLOGU
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Abstract

It 1s about micro-well-logging of resistivity in the wall of borehole close to the wall. The well-logging uses the focused electric
current; the current contours penetrate perpendicularly into the borehole wall. The array of the micro-electrodes can be not only circular,
but too elliptical. The current electrode then looks like very thin elliptical/circular contour. The aim of this paper is derivation of formulas
needed for calculation of partial constant remarked as kgm. The elliptical electrode array is concentric and is formed by potential electrode
shaped as ellipsis and the current electrode as elliptical annulus. The special case is when the current electrode A is simultaneously by the
potential electrode M; then it holds that A = M; too holds that E = N where the guard current electrode E serves simultaneously like the
potential electrode N. This is characteristic for the 2-electrode Microlaterolog used also for registering of rake angle of beds; the resistivity
dipmeter.

Abstrakt

Jedna se o karotazni mikroméfeni mérné¢ho elektrického odporu na sténé vrtu v blizkém okoli stény vrtu. Méteni pouziva fokusaci
elektrického proudu, kdy isolinie proudu vstupuji kolmo do stény vrtu. Mikroelektrodové uspotfddani miize byt nejen kruhové, ale 1
eliptické. Proudova elektroda potom vypada jako elipticka/kruhova kiivka. Cilem této prace je odvozeni vzorcii potfebnych pro vypocet
dil¢i konstanty oznacené jako krm. Eliptické elektrodové uspotadani je koncentrické a je tvofeno potencidlovou elektrodou ve tvaru elipsy a
proudovou elektrodou, ktera ma tvar eliptického mezikruzi. Zvlastni ptipad nastane, kdyz proudova elektroda A je zaroven potencialovou
elektrodou M, takze plati A = M. Soucasné ale plati, ze E = N kde stinici proudova elektroda E je zaroven potencialovou elektrodou N.
Toto je charakteristické pro 2elektrodovy Mikrolaterolog pouzivany také pro méteni sklonu vrstev; stratametr.
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1 Introduction

The potential electrode is an ellipsis surrounded by the current electrode having form of elliptical annulus. The all electrode system is
concentric. It is about calculation of partial constant kgm. This is needed for counting the main constant K characterizing the electrode array
of Microlaterolog. The analysis of Microlaterolog will be made on basis method of the controlled current regulation, MARUSIAK, I. et al.,
(1968) and (1969); it will be in one of the next future papers.

Syntax of the method of the controlled current regulation is based on two fundamental formulas. The first solves calculation of the
main constant of the electrode array denoted as K; the second solves calculation of the coefficient of focusing denoted as 1. On condition of
regulation that holds Unx = Uy those formulas have following form:

-1 -1 -1 -1
K= {( kb —kah )+ kihxn | and ”:(M}(Mj
kem — ken kem — ken

The formulas are identical to those for Laterolog, RYSAVY, F (2013). All variables are the partial constants labelled with indexes
determining the current and potential electrodes. It is the partial constant kgm used for the 2-electrode Microlaterolog. The central potential
electrode has shape as ellipse/circle and is denoted as M; simultaneously it is the current electrode A too. The next current electrode is
elliptical/circular annulus denoted as E. Along with that it is the potential electrode N too. This electrode array is characteristic for the 2-
electrode Microlaterolog. However, factors K and n can be reduced.

_ ko
K={ ki}uxﬂ} '=k 4 and 77=( ANJ-

]
kEm

It is why that electrode B is located in infinity; so k), = k3l = 0. Farther, as A=M and E=N holds that k7, = kz}y = 0. It is evident that

important are only two partial constants; kem and kan. As derivation of final formula for kax is topic of other paper, the main aim of this
paper is derivation calculation of the partial constant kem. The detail analyse for Microlaterolog I am going to publish in a paper of next
ones. My present work is oriented only and only to calculation of the partial constant kg.

As you will derive the final formulas for elliptical electrode array you are able to receive the formulas for circular electrode array too.
You can only imply condition that both half-axes of ellipsis are equal. So thanks to the elliptical electrode array you can very easy go over
to the circular electrode one. This is a mediated way how to get the final formulas for circular electrodes. The next independent way is to
derive those formulas in the direct way. In case you have the final formulas for the circular electrodes the same for both ways you receive
big probability that you have them rightly derived.

2 Basic metrological characteristics
Fig.1 presents the basic metrological characteristics used in this paper. They are these:
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A... the shorter half-axis of ellipsis for the potential electrode [m],
a... the shorter half-axis of the inner ellipsis of the current annulus [m],
B...the longer half-axis of ellipsis for the potential electrode [m],
b... the longer half-axis of the inner ellipsis of the current annulus [m] and
H... the current annulus width [m].
Further, in fig.1 there are remarked the feeding current electrode A, and the guard current electrode E. It presents usual terminology
of the current electrodes in focused well-logging methods. Both electrodes are simultaneously the potential ones. It holds that A = M and
E=N.

3 Principles of calculation
Unlike the case needed for counting constants kam and kan when the current
electrode is a central ellipsis, here the current electrode presents elliptical annulus. You RAL

A\ A
integrate in Cartesian variables (X, y). You have to count the potential remarked as Uy
for an arbitrary point of elliptical annulus on all surface of ellipsis presenting the B
potential electrode. Further, you have to sum simultaneously all potentials Uy over all M=
points of the surface of annulus; this is new system of Cartesian variables remarked as E= VN
(k, h) when the centre of system is in the centre of ellipsis. This is well-visible in fig.1. -
We start of these basic formulas:
p=+ x*+y* ,and (1 \ X b8
S=nxAxB. (2) k‘ Hl v v,k
Further, we have to define an element of potential Uy: \ j
I _RxI_dS h
dUy=—x—=x = (3) N
4z S P _/
Thanks to adjustments from formulas (1) and (2) into formula (3) you receive this » > X
expression: \ //
1 (RxI) 1 (2) (Bj_l dx dy a
dUg=T—X——"X—X| — |X| = | X—F/7—7—=—r. 4) 4A=
2r A 8 \m 2 [ 2+ yz

: : : : . Fig. 1 Depiction of two Cartesian systems of
Now, we are able to express potential Uy like double integral in system of Cartesian variables, (x, y) and (k, h), needed for

variables (x, y): describing elliptical array of electrodes

-58 -



B

~1k+4 h+B dXdy
=—X X —X| — [x| — —_—
UO 2r A 8 (ﬂj (2j k'_l.A hI311x2+y2

)

If you make adjustment of this equation, you will attain this expression:

-1
1 (RxI) 1 (2) (BY kt4 178
UO:_XMX_XHXH (A dy (©)
2r A4 8 \x) \2) [, x5 (yjz
1+ =
X

Due to substitution that y = (xxt) you will get that:

Sy “ljt4a _
U0=+L><Mxlx EAME [ Argsinh h+B dx—ix(RXI)xlx EAM [ Argsinh h=B dx . (7)
2r A 8 \7& 2) 4 X 2r A 8 \7& 2) 4 X

Next substitutions, w = (x/B) and q = (h/B + 1) xw"!, provide possibility how to adjust both integrals for the form being convenient for the
method per partes. Solution of integrals is this:

_ , _ _ , _
-1 | —+1 -1 | —=1
UO:+L><(R—XI)><1>< 2 X A X £+1 x 4 Argsinh 4 x| B — Argsinh 4 x| B
2t A 4 \n) \B) \ 4 B k B k
—+1 —+1
A4 )] A
1 (RxI) 1 (2) (4) (k _ AY! aal _ o 2
——X X—x| — [x| = |x| ——1|x{ Argsinh| | —| X B —Argsinh| | —| x B
2r A 4 \n) \B) (4 B k B k_
L A il i A i
E+1 E—1
+L><(RXI)xlx(—jx(ﬁ+ljx Argsinh (—jx 4 — Argsinh 4 x| A
2r A 4 \r) \B ho B) | h_
B B
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—Lx (RX[) xlx(zjx(ﬁ—ljx Argsinh (éjx 4 — Argsinh (éjx 4
B B) | A B) | h_

R, | id
B B

Now, you have new Cartesian variables remarked as (k, h). You are to define an element of voltage dU being defined like this:

dU:ondS’—S,and

S—ax[(atH)x(b+ H)—axb ]=m(axb){(uﬁjx(ugj_l]

a
Element of the annulus surface is expressed as follows:
dSz(axb)xpxdpxd(p.

The unit element of surface is expressed owing to elliptical coordinates:
k=ax pxcosp,and

h=bx pxsing.

The ratio dS/S is determined with the help of formulas (10) and (11):

-1

H H
ﬁ:(ljx[(lJr—j x(1+—j —1} xpxdpdp.
S T a b

Boundaries of new variables (p, ¢) are these:
p=(0,27),and
1

pE(1,|: (1+%j_2x(cos(p)2+ (H%)zx(sin(p)z} _2>.

You have to integrate over all surface of ellipsis. Voltage remarked as U is expressed like this:

U:ix@xéx@zx(g)x((ug)X(Hg) lj
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27 P, a A prxsin(p+1
x<a+ [ px(—xpxcos¢+1ijrgsinh (—j X dpde
0 p, A B ﬁ><p><cosg0+1
A
b .
2 P, g - ne Expxsm(p—l
— jpx(—xpxcos¢+1)xArgsmh (—) x| - dpde
0 p, A B —x pxcose+1
A
b . |
2w P, g ne Expxs1nqo+1
— | jpx(—xpxcosqo—lijrgsinh (—j x| dpdo
0 p, 4 B —x pxcosp—1
A i
b :
27 P, a y -1 Expxsm(p—l
+ | jpx(—xpxcosq)—lijrgsinh (—j x| <2 dpdg
0 p 4 B —xpxcosp—1
A
27 p, b y g><p><(:osq)+1
+ | jpx(—xpxsinqp+lijrgsinh (—jx 4 dpdo
0 o \B B)"| b .
1 —x pxsing+1
i B
27 p, b y prxcosq)—l
+ | jpx(—xpxsin(p+lijrgsinh (—jx dpdo
0 B B b )
| Expxsmq)+1
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a
2w P, b 4 prxcosq)+1
— | jpx(—xpxsin(o—lijrgsinh (—jx - dpdo
0 p B B —xpxsing -1
B
a
2w p, b y prxcosqp—l
+ | jpx(—xpxsinqp—lijrgsinh (—jx b dpde
0 p, B B Expxsin(p—l

Next adjustment is about implying new substitutions. With the help of substitutions w = (p — p1), t = (W/wz) and q = t ! for p;= 1, wi= 0,

-2 2 -2 . 2 _1/2 . . .
and wy = (H/a + 1) x(COS(p) + (H/b + 1) X (sm(p) —1 ( you prepare the integral after p for solution with the help of the complex

variable. The integral after ¢ will use substitution t = tg (¢/2) and then can be solved again with the help of the complex variable.
The result of double integration is following:

U:1X(RXIJXH (le(iﬁj 9

B R RS

) | sl 5 ) | (G5 | o
M R e e el

If you know formula characterizing voltage U, you will be able to express the partial constant kgwm.
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A A A

A

Both formulas hold under conditions that A < a, and simultaneously B <b.

4 Analysis of the derived formulas

This chapter is about optimum electrode dimensions. It is about whether both electrodes ought to be wide or narrow, possibly
whether the one ought to be wide and the second to be narrow and which of them. There are two significant factors; the width of annulus
of the current electrode and the width of insulator being between an ellipsis of the potential electrode and the current electrode.

4.1 Wide current annulus
Here holds condition that H >> a > b. Then it holds that:

e mels)5)

In such case you obtain the following expressions for F; and F:
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o) gt el o 97
ra=+(3): @ (zgjw a { [(% QWgsmh{(_“j_l} 71 XArgsmh{(_‘lj_l} ] }

For H— oo it holds that:

H H H H

—+1|=~| —|and| —x1|=| —|.

A A B B
You receive that:

F1=F2=OandF=F1+F2=0. (19)

That means the partial constant tends to infinity and voltage on the surface of the potential electrode is zero. This is unpleasant variance
excluding optimal dimensions.

4.2 Narrow current annulus
Here holds condition that H<< b < a, what presents that influence of the annulus width is eliminated. In such case there exist
conditions:

H a a H b b
—+—|=|—|and| —+— |=| —|.
A A A B B B
It means that holds that (H/A) = (H/B) = 0. It will be used in the next. Now we attain the following expressions:

()

2 -1 — X =

A a A A
F1:+2X — | X| — X
(Bj (bj (H aj (H bj (aj (bj
+— x| —+—= || — |x| =

A4 4)\B B) \4) \B

X
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Now, we have to count the limit of expression. Because it is ratio 0/0 we use L"Hospital rule.

SR ). ) R ¢ ¢) N ¢ ) N
S G T GG GG BB G

So you receive the following expressions for F; and Fo.

O IRt Y e TR A IR |

e S R R B} |

Narrow insulator (the large potential electrode)
Here hold these conditions:
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(i) o)

We get formulas being given only with both half-axes of the ellipses:

_oan[AY @ arosinnd Lo [A)' L and Fy=+2x( 4 xixmgsmhl. (20), 21)
g 3] e Gty

A B

A

B

These are the highest values for both constants F; and F,. The optimal case is when the current annulus is very narrow, however, the
potential ellipse is as large as possible, i.e., annulus of insulator between both electrodes is really narrow but functioning too. This is that
optimal case.

Wide insulator (the very small potential electrode)
This case is characterized by conditions that:

(el )

These conditions mean that it holds: F;=F,=0andF; + F, =0.This is formula (19). The potential electrode presented is almost point; it

has consequence that voltage tends to zero. It is the same effect like it was for the wide current annulus; an unpleasant variance.
The overall analysis allows us to generalize. The surface of the potential electrode ought to be as big as possible; in contrary, the
surface of the current electrode should be as small as possible. Then voltage is not zero and you receive its maximal value.

5 Control — deduction of formula for circular electrodes
In such case you transform the elliptical electrode array to the circular electrode one. We implement condition, B = A and b = a, into
formulas (17) and (18). Then you get these formulas:

i
4 -1 -1
F1:+2x#x £+£+1 x Argsinh £+£+1 - £+£—1 x Argsinh E+£—1 , and
H a A A A A A A A A4
Z+2XZ
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o -1 -1

F2=+#x (H+a+lijrgsinh(H+a+lj —(H+a—1ijrgsinh(H+a—lj .
(H+2 aj A4 A A4 A A4 A A4 4

A A
For sum of both expressions it is valid that:
H a

(A+Aj H a H a ' (H a H a )

(F +F, )=+3>< xq| —+—+1|xArgsinh| —+—+1| —| —+——1|xArgsinh| —+——1 : (22)
! (H aj A 4 A4 4 A4 A4 A4 4
— 4+ 2x—
A

As factors A, a present now radius of circle we have to implement diameter of circle. We use identities like A = (D/2) and a = (d/2).

k ﬁjx2: 2r

@_(D (Fri+ry)

From this expression you get the following formula:

(Ej:2_7r and (23)
D) F
(21{ dj
_ -1 1
F:2><(F +F2):6>< D _DJ_, (2H+i+lijrgsmh(2—H+i+lj —(2—H+i—1ijrgs1nh(2—H+i—lj (24)
! (2H+2xdj D D D D D D D D
D D

where D...the diameter of the circular potential electrode [m] and
d...the inner diameter of the circular current annulus [m].
The formula holds for D < d. This is formula derived for the circular annulus. It is partial case of the elliptical one. As I made, for my
own control, the direct way of derivation of final formula for circular electrodes too, I can say the formula is derived rightly. Consequence
of that is both formulas for circular and elliptical electrodes are rightly derived.

6 Derivation of formula for the common potential and current electrodes; E = N
It is case of the 2-electrode Microlaterolog. The 2-electrode elliptical Proximity log it can be too. It holds in both cases that E=EN and
A=M. Let’s return again to basic formulas, formulas (17) and (18).
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B B

X

If it holds that the only electrode shaped as elliptical annulus exists, then such electrode presents both potential and current one. An
electrode spacing between electrodes E and N is zero, i.e. EN=0. As A =0 and B = 0 too, it is possible to adjust both functions when you
use the following conditions:

(H a j (H aj (H b j (H bj
—+—=*l || —+— |, | =F+=F] || —+—=|
A A A A B B B B

Both functions will be changed as follows:

e et A (O ERCI ) R R )

oyttt
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Let’s return to formula (16).

e
A) Fi+F,

If EN =0then holds that A = 0 and B = 0 what presents that F; = 0, F, = 0, too. Their sum is zero; (F; + F2) = 0. In such case the constant

ken goes to infinity, i.e. key —oo. Its reciprocal value is equal to zero; kg =0 and it is why that U = 0. Just this confirms condition needed
for reduced factors K and n given in Introduction.

7 Conclusions
Analysis of derived formulas yields the following conclusions:
e The partial constant kem of the elliptical electrodes can be exactly counted, because all needed characteristics of the electrode array are
well-measurable.
e The elliptical array of electrodes in comparison to circular one has two components remarked as F; and F, either for one of half-axes.
e [t is possible to get the final formula for the circular electrodes too, thanks to implication of condition equality for both half-axes ellipses.
o If it is that holds that E = N, the voltage of the annulus electrode is zero and the partial constant tends to infinity. Consequence of that is

the reciprocal value of the partial constant is equal to zero; kg =0; the effect is independent on the electrode shape.

o It holds that the surface of the potential electrode being in the centre of the electrode array should be as big as possible, whereas, the
surface of annulus of the current one must be as narrow as possible. It is an optimal electrode array. The current electrode looks then like
an elliptic/circular contour.
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