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Abstract  

 The question how to correctly remove the spent nuclear fuel from the environment is still unsolved. In the case of disposal, it is clear 

that very long term monitoring of the conditions of the repository is one of the key issues. In the process of searching for the suitable 

monitoring process, the geophysical methods in general should be taken in focus. In general, geophysics offers non-invasive monitoring 

methods of the physical processes running in the repository. Regardless of the finally selected methodology and monitoring procedure, the 

data interpretation means to detect significant temporal changes and anomaly in the data. Machine learning methods and structure detection 

algorithms can be used as a useful support method for the classical geophysical data interpretation. The article presents a related research 

covered by project Modern2020. 
 

Abstrakt 

Otázka, jak naložit se stávajícím vyhořelým jaderným palivem, zatím nemá jasnou odpověď. Jedním z klíčových problémů trvalých 

úložišť je zajištění dlouhodobého sledování podmínek v úložišti. Při hledání vhodných monitorovacích metod by měly být vzaty v úvahu 

geofyzikální metody, které nabízejí možnost neinvazivního monitorování fyzikálních dějů v úložišti. Nezávisle na zvolené metodě 

a procesu monitorování lze říci, že vyhodnocení získaných dat bude vždy vyžadovat detekci dočasných a anomálních změn v datech. 

Metody strojového učení a metody automatické detekce struktur v datech mohou v tomto případě sloužit jako vhodná doplňková metoda ke 

klasické interpretaci geofyzikálních měření. Článek seznamuje se souvisejícím výzkumem řešeným v rámci projektu Modern2020. 
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1 Introduction 

The machine learning (ML) methods have already found its applications in geosciences and remote sensing LARY, D. (2010). The 

machine learning consist of a lot of techniques, in the geophysical field the Artificial neural networks (ANN), support vector machines 

(SVM), self-organizing maps, decision trees and other already were used SHANIN, M. A. (2005) and SHANIN, M. A. (2015). The most 

commonly used are the ANN and SVM methods. 

The principle of the machine learning algorithm is to emulate the human learning process – the algorithm extracts the behaviour of 

the system from the set of the training data. Modern ML techniques do not need a prior knowledge about the relationship between the data 

and system parameters. The limitation of the application of the ML techniques in geophysics is the need for a large training data set. 

Regarding to the waste deposit 

monitoring, the ML algorithm can be used to 

detect significant anomalies in the data 

stream. Regardless of the monitoring 

technology, the physical conditions in the 

repository such as water saturation or 

temperature should either remain unchanged 

or change in a known manner. If any 

difference in monitored data is captured, it is 

necessary to recognize the cause of the 

change. Physical parameters in the repository 

can slightly oscillate around the equilibrium, 

which can be understood as a normal 

behaviour, or they can more dramatically 

increase/decrease. Such situation can be sign 

of a problem in the repository – for example 

the surrounding barrier may be corrupted and 

safety of the repository can be endangered. 

The repository itself is strictly defined – 

it is a structure with defined and well known geometry, with stable homogeneous surrounding. It is possible to start pre monitoring to get 

the stable data stream as a reference training set. The other training set of the data can be a set of models of anomaly data which correspond 

to predefined problems occurring in the repository – increasing temperature over the prediction, modified water saturation, modified 

geometry etc. The task is to search in the data for any similarity with predefined anomaly situations. 

 
Fig.1 The illustration of the detection process, based on the synthetic data. The 

horizontal cylinder with noise (left picture, noise level is from 0 to 0.2 of the 

maximum value) and estimated value. Original depth is 22 m, estimated is 23 m 
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The presented work is a part of the Modern2020 project which is focused to the nuclear waste repository monitoring procedures. The 

geophysical methods included to the project are: Electric resistivity tomography (ERT), Induced polarisation (IP) and Seismic methods 

(SM). For the ERT it is planned to set up a real monitoring experiment in the real operating condition of the repository. The IP is to be also 

run in the real operating condition with ERT as a supplementary method to distinguish the influence of changing water saturation and the 

temperature. For the SM, the full waveform seismic inversion is to be adjusted for the target application. The machine learning techniques 

are to be used as a supplementary method for the full waveform inversion. The task for the ML in SM is to classify the situation when the 

geometry of the repository is modified or the water saturation is dramatically different from the normal operating conditions 

The structure of the input data is following – the model repository is a tunnel with circle shape. In the plane perpendicular to the 

tunnel are located two monitoring boreholes toward each other at an acute angle. The wave sources are located in one of the boreholes, the 

receivers in the other one. The model contains 114 sources and 104 receivers. The model was created for the dry tunnel, the fully water 

 
Fig.2 The difference being in the waveforms. On the left side of the picture is the original 

waveform for selected sources. The right side shows its conversion into the 

structures. The tunnel geometry is the same for both samples, the water saturation 

is different 
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saturated tunnel, the tunnel with different geometry. For each of the configuration 114 data set are used as a training data set – one sample 

is the answer to one of the sources from all the receivers. The models were created and calculated by our project partner from ETH Zurich 

NUBER, A. (2015). 

 

 

 

Fig.3 The structure detecting algorithm with lookup table  
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2 The classification based on structure detection 

The task for the algorithm is to identify the anomaly dependent structures in the data and to classify the anomaly type. The structure 

(or feature) in the image processing domain is not clearly defined, but it can be understood as a typical image structure appearing in the 

data. The anomaly structure is a typical image which appears in the data. Presented algorithm, fig.1, is based on already existing 

implementation used to classify elementary anomaly structures in the near surface gravity data KOSKOVA, L. (2013). The initial research 

task for the algorithm was to classify the anomaly type (sphere, cylinder, rectangular mass) and its parameters (contrast density) in the near 

surface gravity data. Each type of anomaly structure has its typical appearing in the gravity data (a circle for the spherical and cylinder 

anomaly, sphere or rectangular shape for the rectangular mass etc.). Directly from the physical model the relationship between the size of 

the anomaly area and its parameters can be easily derived. A general function presenting a symmetric potential field anomaly can be 

expressed by simple equation SALEM, A. (2011): 

   
 zr

F
rf

q22
  (1)                

Equation (1) presents symmetric potential field anomaly. For F and q symbols see tab.1, the z is the depth of the anomaly, r is the surface 

radius. Considering simple anomaly bodies, the f-function is a smooth function; maximum value is located above the anomaly centre. If the 

anomaly field is presented as 2D image, it gives spherical contours for 

sphere and vertical cylinder, for horizontal cylinder we obtain linear 

contours. 

For all three bodies a linear dependency is between the depth of 

anomaly centre (z) and the surface location of the half-maximum value. 

The original algorithm takes the gravity data and converts the data into 

the grayscale image. As a next step, the noise reduction filter based on 

the Wiener filters is applied to enhance the structures in the data. 

Following step uses elementary transformations to detect the lines and 

curves in the images. If a structure is detected, it is labelled: the location, radius of the curves, and the angles of the lines are proposed to the 

classifier. The classifier selects the most probable synthetic anomaly model and gives the parameters (anomaly type, location, contrast 

density). The proposed models are calculated and compared with the original data. The best fitting proposal is finally selected as the 

underlying physical model. The algorithm was tested with the synthetic data, see fig.1. 

For the application in the Modern 2020 project, the algorithm was modified. First problem was the last step of the algorithm: 

conversion from the anomaly parameters to the model. The underlying physical model for seismic is complex and therefore another 

approach for the anomaly estimation is being tested. Instead of direct calculation from the parameters, the possible anomaly models are pre-

calculated and stored in the indexed library. Compared to the potential fields, the relation between the shape of the structure and the 

Tab.1 The  F and  q  factors  for  simple  geometrical  bodies, 

          gravity   field;   γ   is   gravitational  constant,  Ms is the  

          contrast mass for the sphere and  Mc is density contrast  

          multiplied by cross sectional area z for both of cylinders 

Anomaly type F q 

Sphere γ×Ms×z 1.5 

Horizontal cylinder 2γ×Mc×z 1.0 

Vertical cylinder γ×Mc 0.5 
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anomaly type is not as clear as for the potential field, see fig.2. The shape of the first arrival is detected; number of closed shapes in the 

image, the total area of the shapes and the distribution of the shapes is extracted. The whole modified algorithm is depicted in the fig.3.  

The structure parameters are used as the search keys in the pre-calculated lookup table. The lookup contains data from predefined models 

with different water saturation and tunnel geometry. The algorithm is now implemented and tested in the Matlab environment with limited 

number of models. 

The possible weakness of the proposed solution is limited number of models available and complexity of the structures in the image. 

Unfortunately, when the water saturation reaches the expected level for the real operation in the tunnel, it is very hard to find a difference 

between the structures of normal and anomalous tunnel configuration. The classifier is now able to detect the dramatically modified 

geometry of the tunnel and can detect the situation when tunnel is dry instead of water saturated. The output of the first experiments also 

shows that the detection is sensitive for the different physical parameters of the rock, but not as sensitive for the different geometries of the 

tunnel.  

The above described algorithms are based on fact, that at the beginning it is well known, what is the structure difference between the 

normal and anomalous data. The initial experiment shows, that the difference between the data can be unclear and the detection can misfit 

the anomalous data. Therefore it was decided to use the machine learning to test, if the neural network is able to extract the features itself. 

The task for the ANN will be the same as for the classifier: to distinguish between the normal tunnel operation (circular geometry and high 

water saturation) and the anomalous configuration (modified geometry, low water saturation). 
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